

HBO

Windows and Kerberos

Gwendal Patat Univ Rennes, CNRS, IRISA 2025/2026

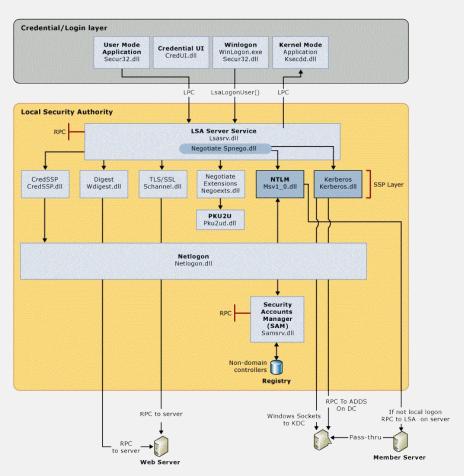
On today's schedule

Main points:

- Kerberos Overview
- Kerberos Protocol
- Kerberos messages
- Attacks on Kerberos

Kerberos Overview

Kerberos


Kerberos is an authentication protocol defined in 1989.

It is used to authenticate a user **across a realm** (domain) in order to provide access to services.

Kerberos is primarily deployed in Windows, where Microsoft uses additional proprietary fields.

- Kerberos is based on a trusted third party model, called the **Key Distribution Center (KDC)**, for *mutual* authentication.
 - The KDC issues tickets proving identity.
- Authentication relies on **shared secret keys and encrypted messages**, avoiding sending passwords over the network.
- The protocol uses **tickets** (TGT and service tickets), which allow the user to reuse authentication without repeating password verification.
- In Windows, Kerberos tickets include a Privilege Attribute Certificate (PAC) that carries group/SID information for authorization.

Authentication Workflow

Windows Domain

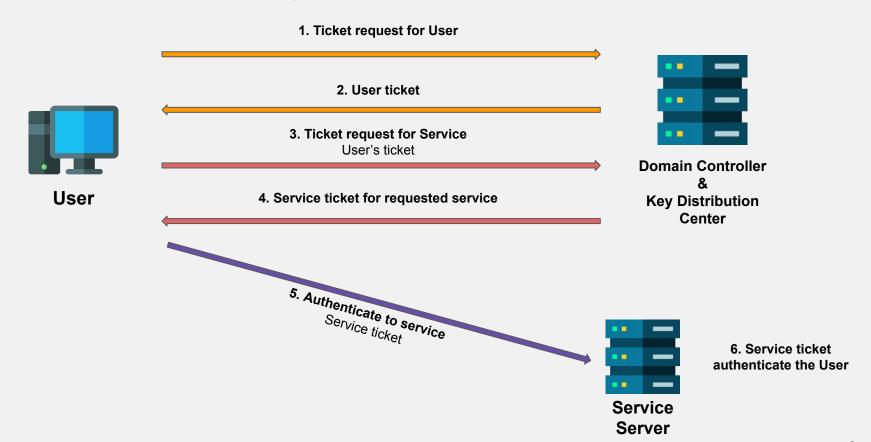
Vindows Domain have been around since Windows NT (1993):	
	A domain is a logical security boundary used to manage users, computers, and policies.
	All entities in the domain share a central authentication authority.
	Users authenticate once and can access resources across the domain (Single Sign-On).
omain Controller (DC) is the server responsible for:	
	A Domain Controller:
	Storing account credentials and security policies.
	Authenticating users and computers.
П	It often the KDC for the Kerberos protocol

Active Directory

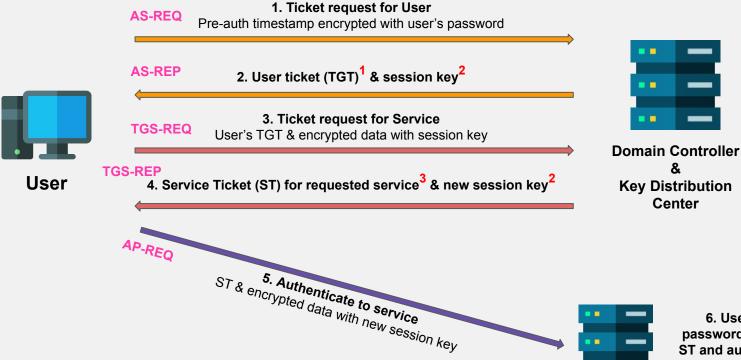
Active Directory (AD) is the directory service that stores and organizes information about:

- Users, groups, computers, organizational units.
- Security settings and group policies.

Relationship Between Domain and AD:


- The domain defines the administrative and authentication scope.
- □ Active Directory is the underlying database/service that implements the domain.
- Every Domain Controller runs AD and shares the same replicated directory data.

In short:


- Domain = Security boundary + Identity namespace.
- □ AD = Directory + Data + Policy framework that supports the domain.

Kerberos Protocol

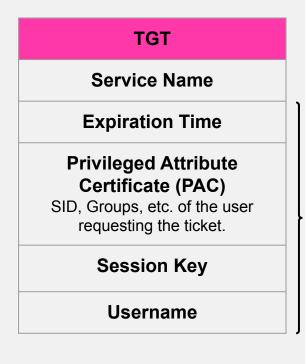
Kerberos Protocol Simplified

Kerberos Protocol

- 1: Encrypted with the krbtgt account password.
- 2: Encrypted with the user's password.
- **3**: Encrypted with the service account's password.

6. Uses service password to check the ST and authenticate the user

AS-REQ (Authentication Service Request)


User request a TGT:

- Pre auth Data
 - Timestamp encrypted by the user's password.
- □ Username
- Service Name
 - ☐ Here "krbtgt"

AS-REP (Authentication Service Reply)

Ticket Granting Ticket (TGT) and Session Key:

- User's TGT
- Session Key
 - Encrypted with the user's password.

Encrypted with the krbtgt account password.

TGS-REQ (Ticket Granting Server Request)

User request a ST:

- Service Name
- ☐ Ticket-Granting Ticket
 - User's TGT with the krbtgt encrypted session key.
- Authenticator
 - Encrypted by the session key.
 - Proves that the user knows the session key.
 - Contains the user name, client realm, timestamp, etc.

TGS-REP (Ticket Granting Server Reply)

ST and Session Key:

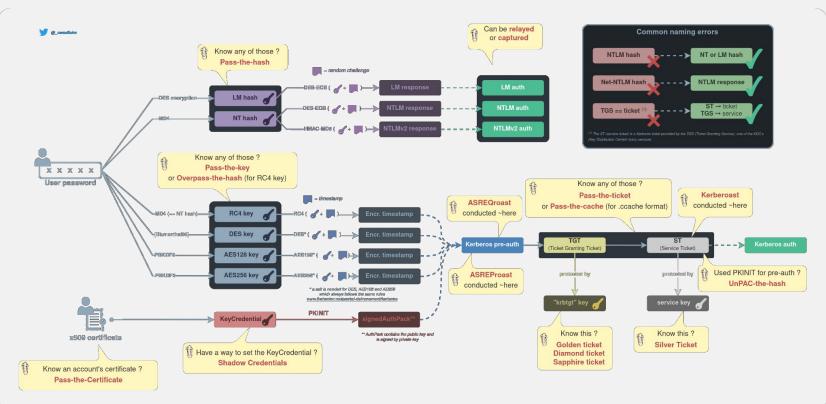
- Service Ticket
- Session Key
 - Encrypted with the user's password.

Service Ticket Service Name Expiration Time Privileged Attribute Certificate (PAC) SID, Groups, etc. of the user requesting the ticket. **Session Key** Username

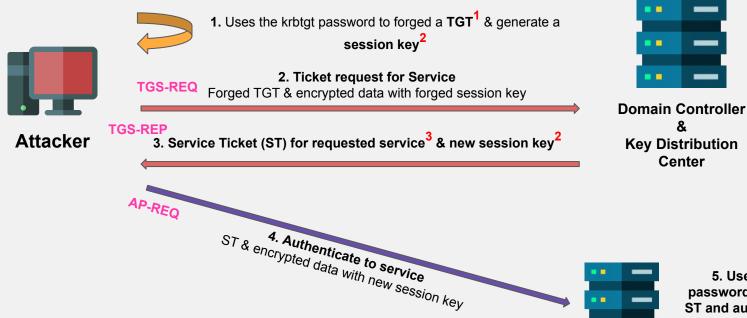
Encrypted with the service account password.

AP-REQ (Application Request)

Service defined protocol.


Kerberos Security

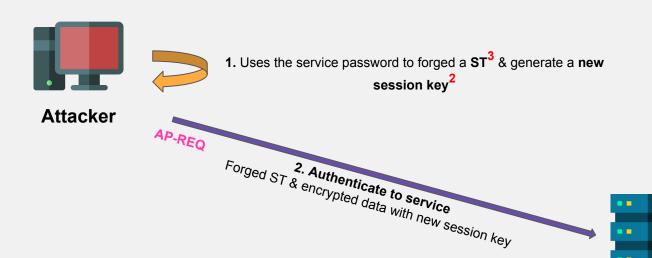
An old protocol (1989), with old ciphersuites...


- DES-CBC-CRC: deprecated since Windows 7
- DES-CBC-MD5: deprecated since Windows 7
- □ RC4-HMAC: weak
- □ AES*-CTS-HMAC-SHA1 (key = PBKDF2(password))
 - 4 096 iterations
 - salt: concatenation of the realm name, and the client's name (in uppercase)

Attacks on Kerberos

Windows authentication Attacks

Golden Ticket Attack



- 1: Encrypted with the krbtgt account password.
- 2: Encrypted with the user's password.
- **3**: Encrypted with the service account's password.

5. Uses service password to check the ST and authenticate the attacker

Silver Ticket Attack

3. Uses service password to check the forged ST and authenticate the attacker

Service

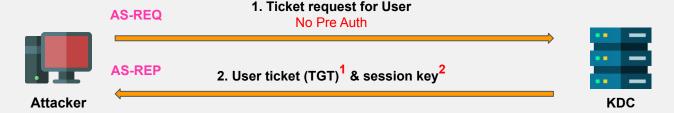
Server

- 1: Encrypted with the krbtgt account password.
- 2: Encrypted with the user's password.
- **3**: Encrypted with the service account's password.

Diamond/Sapphire Ticket Attacks

Variant of the Golden and silver ticket attacks.

- Golden and Silver ticket attacks can easily be detected due to the lack of REQ before the forged REP.
- ☐ In addition since 2021, the username in the PAC needs to match an existing user in the Active Directory.
- Now, we first request a legitimate ticket and modify its content to make a stealthy forgery:
 - □ **Diamond**: we modify the PAC of the ticket to match what we want.
 - □ **Sapphire**: The PAC is replaced by a legitimate PAC with more privilege, retrieved before.


ASREQroast

An attacker with network sniffing capabilities (APR poisoning, DHCP spoofing, etc.) can either intercept the AS-REQ to perform an offline attack:

- Attackers can try to crack those encrypted timestamps to retrieve the user's password.
 - ☐ Mainly depend on the algorithm being used (RC4 vs AES).

ASREProast

- 1: Encrypted with the krbtgt account password.
- 2: Encrypted with the user's password.

Because some applications don't support Kerberos preauthentication, it is common to find users with Kerberos preauthentication disabled:

- An attackers can request TGTs for these users and crack the session keys offline.
 - □ Why the session key? Because it is encrypted using the hash of the user.

Kerberoast

- 2: Encrypted with the user's password.
- Encrypted with the service account's password.

If an attacker knows service names to request a ST to the KDC:

- An attackers can request STs for services and try to crack the service password offline.
 - ☐ Most service accounts have strong passwords making this attack less practical.
 - However, some user accounts are also service accounts: meaning with user defined password...

Resources and Acknowledgements

- https://book.hacktricks.wiki/en/
- https://learn.microsoft.com/en-us/
- https://www.thehacker.recipes/ad/movement/kerberos/
- □ Windows Internals, Part 1, 7th Edition
- External materials from Daniel De Almeida Braga.